Construction d'une famille finie de graphes de Ramanujan

Authors

  • Kapita Manzanza Jean
  • Nestor Anzola Kibamba
  • Biaba Kuya Jirince
  • Pongo Ngentshi Benoît
  • Nawej Kayij Emile

DOI:

https://doi.org/10.5281/zenodo.14217522

Keywords:

Graphe de Ramanujan, trou spectral, graphes somme, graphes de Cayley, théorie de Galois, valeurs propres, groupes abéliens, extension galoisienne. Groupe de Lie, représentation d’un Groupe.

Abstract

In this article, we intuitively define and introduce Ramanujan graphs. We focus on notable Ramanujan graphs known as sum graphs, characterized by specific properties related to eigenvalues. Indeed, studying these eigenvalues allows us to determine the spectrum of a Ramanujan graph, which is defined as the minimum of the difference between k and the absolute value (other than k) of an eigenvalue of a k-regular Ramanujan graph. This spectrum is as large as possible. For a graph to be Ramanujan, it is necessary and sufficient to study its eigenvalues, and eventually, to construct a finite family of Ramanujan graphs.

Published

2024-11-25

How to Cite

Kapita Manzanza Jean, Nestor Anzola Kibamba, Biaba Kuya Jirince, Pongo Ngentshi Benoît, & Nawej Kayij Emile. (2024). Construction d’une famille finie de graphes de Ramanujan. Revue Internationale De La Recherche Scientifique (Revue-IRS), 2(5), 3122–3137. https://doi.org/10.5281/zenodo.14217522

Most read articles by the same author(s)